SUBSCRIBE NOW
for home delivery

Blazes of light reveal how plants signal danger long distances

Eric Hamilton
UW-Madison

MADISON - In one video, you can see a hungry caterpillar, first working around a leaf's edges, approaching the base of the leaf and, with one last bite, severing it from the rest of the plant. Within seconds, a blaze of fluorescent light washes over the other leaves, a signal that they should prepare for future attacks by the caterpillar or its kin.

That fluorescent light tracks calcium as it zips across the plant's tissues, providing an electrical and chemical signal of a threat. In more than a dozen videos like this, University of Wisconsin-Madison Professor of Botany Simon Gilroy and his lab reveal how glutamate — an abundant neurotransmitter in animals — activates this wave of calcium when the plant is wounded. The videos provide the best look yet at the communication systems within plants that are normally hidden from view.

Simon Gilroy, professor of botany at the University of Wisconsin-Madison, meets with his graduate students conducting independent research in Birge Hall on March 2, 2018.  Gilroy is a recipient of a 2018 Distinguished Teaching Award. (Photo by Bryce Richter / UW-Madison)

The research is published Sept. 14 in the journal Science. Masatsugu Toyota led the work as a postdoctoral researcher in Gilroy's lab. Gilroy and Toyota, now at Saitama University in Japan, collaborated with researchers from the Japan Science and Technology Agency, Michigan State University and the University of Missouri.

"We know there's this systemic signaling system, and if you wound in one place the rest of the plant triggers its defense responses," says Gilroy. "But we didn't know what was behind this system."

"We do know that if you wound a leaf, you get an electrical charge, and you get a propagation that moves across the plant," Gilroy adds. What triggered that electric charge, and how it moved throughout the plant, were unknown. 

But calcium was one candidate. Ubiquitous in cells, calcium often acts as a signal about a changing environment. And because calcium carries a charge, it can also produce an electrical signal. But calcium is ephemeral, spiking and dipping in concentration quickly. The researchers needed a way to see the calcium in real time.

Masatsugu Toyota

So Toyota developed plants that showed calcium in a whole new light. The plants produce a protein that only fluoresces around calcium, letting the researchers track its presence and concentration. Then came caterpillar bites, scissor cuts and crushing wounds.

In response to each kind of damage, videos show the plants lighting up as calcium flows from the site of damage to other leaves. The signal moved quickly, about one millimeter per second. That's just a fraction of the speed of animal nerve impulses, but it's lightning fast in the plant world - quick enough to spread out to other leaves in just a couple minutes. It took just a few more minutes for defense-related hormone levels to spike in distant leaves. These defense hormones help prepare the plant for future threats by, for example, increasing the levels of noxious chemicals to ward off predators.